
Numerical Evaluation of the Relativistic Magnetized Plasma Susceptibility Tensor and
Faraday Rotation Coefficients

Alex Pandya1,3 , Mani Chandra2 , Abhishek Joshi3, and Charles F. Gammie3,4
1 Department of Physics, Princeton University, Princeton, NJ 08544, USA

2 Research Division, Quazar Technologies, Sarvapriya Vihar, New Delhi, 110016, India
3 Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA

4 Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA
Received 2018 July 27; revised 2018 October 9; accepted 2018 October 9; published 2018 November 14

Abstract

Polarized models of relativistically hot astrophysical plasmas require transport coefficients as input: synchrotron
absorption and emission coefficients in each of the four Stokes parameters, as well as three Faraday rotation
coefficients. Approximations are known for all coefficients for a small set of electron distribution functions, such as
the Maxwell–Jüttner relativistic thermal distribution, and a general procedure has been obtained by Huang &
Shcherbakov for an isotropic distribution function. Here we provide an alternative general procedure, with a full
derivation, for calculating absorption and rotation coefficients for an arbitrary isotropic distribution function. Our
method involves the computation of the full plasma susceptibility tensor, which in addition to absorption and
rotation coefficients may be used to determine plasma modes and the dispersion relation. We implement the
scheme in a publicly available library (https://github.com/afd-illinois/symphony) with a simple interface, thus
allowing for easy incorporation into radiation transport codes. We also provide a comprehensive survey of the
literature and comparison with earlier results.
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1. Introduction

The Event Horizon Telescope (EHT) is a millimeter
wavelength Very Long Baseline interferometry collaboration
that aims to resolve the event horizon of the low accretion rate
black holes at the center of the Milky Way (Sgr A*) and M87
(Doeleman et al. 2009). EHT will produce resolved, polarized,
time-dependent data for both sources. This data will constrain
models of the black hole accretion flow and any outflows or
jets, the magnetic field geometry in the source, the state of the
plasma, and possibly the black hole spacetime. Still, interpret-
ing the data will require models that accurately predict the
resolved, polarized radiation field from a dynamical model for
the accretion flow. Our goal here is to narrow the uncertainties
in the production of synthetic polarized maps of black hole
accretion flows from underlying flow models.

Black holes that are accreting at a sufficiently low rate, in the
sense that the luminosity is small compared to the Eddington
luminosity L GMc4Edd esp k= (M≡black hole mass, esk º
electron scattering opacity), are believed to be surrounded by
an optically thin, geometrically thick, magnetized disk (Yuan &
Narayan 2014). Both M87 and Sgr A* are believed to be in this
regime. A geometrically thick disk must be relativistically hot
close to the innermost stable circular orbit, since scale height H
and local radius r are related through hydrostatic equilibrium
by H r r c GMp

2 2= Q( ) ( ) ( kT m cp p p
2Q º ( ) is the dimen-

sionless proton temperature; Tp º proton temperature; mp º
proton mass). If the electrons are relativistic, the disk is
collisionless if it is optically thin to Thomson scattering; hence,
Te=Tp (Te º electron temperature) is not required, nor do
protons and electrons need to follow a thermal distribution
function. Existing EHT observations resolve both Sgr A* and
M87 and are consistent with dimensionless electron temper-
ature kT m c 10e e e

2Q º ~( ) close to the innermost stable
circular orbit (Doeleman et al. 2008).

Electrons in a magnetized plasma emit and absorb photons
by the cyclo-synchrotron process. Synchrotron radiation is,
in general, linearly and circularly polarized. Recall that
polarized radiation can be described by the Stokes vector
I I Q U V, , ,S

T= { } , where I, which is positive definite, is total
intensity, Q and U are signed and describe linear polarization
with the electric vector polarization angle at angle π/4 to each
other, and V is signed and describes circular polarization. A
magnetized plasma can also induce generalized Faraday
rotation, or Faraday conversion, that interconverts Stokes Q,
U, and V.
Emission, absorption, and generalized Faraday rotation

along a ray parameterized by a coordinate s are governed by
the polarized radiative transfer equation

d

ds
I J M I . 1S S ST T= - ( )

The vector J j j j j, , ,S I Q U V
T= { } contains the emission coeffi-

cients for each of the Stokes parameters. The Mueller matrix is
defined to be

M . 2ST

I Q U V

Q I V U

U V I Q

V U Q I

a a a a
a a r r
a r a r
a r r a

=
-

-
-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ( )

Here, αS are the absorption coefficients and ρS are the
generalized Faraday rotation coefficients (also called rotativ-
ities; ρI does not exist). Altogether there are 11 transfer
coefficients: 4 emissivities, 4 absorptivities, and 3 rotation
coefficients. The covariant polarized transfer equation is
described, with references to the relevant literature, in Dexter
(2016) and Moscibrodzka & Gammie (2017). These transfer
coefficients may be related to components of the dielectric
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tensor (and the susceptibility tensor via Equation (9)), provided
that the antihermitian part of the dielectric tensor is small
compared to the Hermitian part (see Zheleznyakov 1996).

A general procedure for calculating emissivities and
absorptivities for a gyrotropic distribution function is provided
in the publicly available code symphony5 (Pandya et al.
2016), along with a comparison to other results in the literature.
Approximate formulae for all coefficients are provided in
Dexter (2016). A general procedure for calculating rotativities
for an isotropic distribution function was first provided by
Huang & Shcherbakov (2011) via a Mathematica script.6 In
this paper we provide an alternative to the Huang &
Shcherbakov (2011) approach to calculating rotativities and
absorptivities with the aim of simplicity, transparency, and
computational speed, so that our work may be immediately
useful to those modeling radiative transfer. Our results agree
with those of Huang & Shcherbakov (2011). We also provide a
survey of the literature, complete checkable derivations, and a
publicly available C code with python interfaces. These
features are incorporated in the symphony code.

This paper is organized as follows. In Section 2, we define
the susceptibility tensor and review the relations between its
components and the components of the Mueller matrix. In
Section 3, we provide a general expression for the suscept-
ibility tensor. Section 4 describes a numerical scheme for
evaluating the tensor, and Section 5 summarizes and compares
our results to earlier work. Appendix A provides a complete
derivation of the results beginning with the linearized Vlasov
equation.

2. Review and Definitions

The components of the Mueller matrix are directly related to
the classical linear response of the plasma to an imposed
electromagnetic wave. We assume the wave has a time-varying
electric field E xt,( ) that is turned on at t=0. We then have
the transform

k xE dx e dt e E t, , , 3k x
j

i i t
j

0ò òw = w-
¥

( ) ( ) ( )·

which is a Fourier transform in x and a Laplace transform in t.
The latter implies that ω is complex, and requires a sufficiently
large Im 0w >( ) such that the transform converges as t  ¥.
For real frequencies ω, the standard approach involves making
Im(ω) infinitesimal and taking the limit Im(ω)→ 0 at the end of
the calculation.

We are most interested in the regime where kIm ∣ ( )∣
kRe ;∣ ( )∣ if this condition is not met, the absorption length scale

is on or near the order of the wavelength of the radiation, and
the radiation will not be detectable after propagating through an
astrophysical source kilometers or larger in size. Our treatment
does not enforce this restriction on the wavevector, however,
and our derivation is valid for complex k.

The plasma response can be expressed in terms of the plasma
conductivity 3-tensor σij (units in Gaussian-cgs: s−1), where

J E . 4i ij js= ( )

Here, Ji is the induced current density. Equivalently, the plasma
response can be described by the dielectric 3-tensor Kij

(dimensionless), where

D K E . 5i ij j0= ( )

Here, Di º induced displacement field, and 0 º permittivity of
free space ( 4 1p= -( ) in Gaussian-cgs). The plasma response can
also be described by the response 3-tensor αij (units in
Gaussian-cgs: s cm1 1- - ) in the temporal gauge,7 where

J A . 6i ij ja= ( )

Here, Ai is the imposed vector potential. The relationship
between these 3-tensors is

K
i

7ij ij ij
0

d
w

s= + ( )

c
8ij ij2

0
d

w
a= + ( )

, 9ij ijd c= + ( )

(see, e.g., Equation (6.17) in Melrose & McPhedran (1991),
except a missing factor of c is inserted to correct Equation (8)).
Here, χij is the dimensionless plasma susceptibility 3-tensor.
A sufficient condition for the response of the plasma to be

consistent with Maxwell’s equations is

kk k
c

k
c

E, 0. 10i j ij ij j

2

2
2

2

2

w
d

w
c w+ - + =

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( ) ( )

This is an eigenproblem with eigenvalues kA and eigenvectors
EA for each plasma mode A. At high frequency, where

1ijc ∣ ∣ , the plasma supports two modes that, to first order in

ijc∣ ∣, depend only on the components of χ in the plane
perpendicular to k.
The relationship between ijc and the transfer coefficients is

as follows. If directions 1, 2, 3 form a right-handed coordinate
system and the wavevector points along the positive 3 axis,

Figure 1. Diagram of the coordinate system used in the calculation. The tensor

ijc is computed in the x y z, , basis, and the tensor ij
ROTc is computed in the 1, 2,

3 basis. We define the 1 direction by the component of x̂ perpendicular to e3ˆ ,
and likewise the 2 direction is defined by the component of ŷ perpendicular to
e3ˆ . The wavevector k lies in the x–z plane. Note: some authors (e.g., Huang &
Shcherbakov 2011 and Dexter 2016) keep the same definitions for the 1, 2, 3
basis but instead choose the k to be in the y–z plane; this choice reverses the
sign of their Stokes Q coefficients when compared to ours.

5 https://github.com/afd-illinois/symphony
6 https://astroman.org/Faraday_conversion/

7 In which the scalar potential 0f  , also known as the Hamiltonian or
Weyl gauge.
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then (see Figure 1)

c

2
Im 11I

0
11
ROT

22
ROTa

pwe
c c= +( ) ( )

c

2
Im 12Q

0
11
ROT

22
ROTa

pwe
c c= -( ) ( )

c

2
Im 13U

0
21
ROT

12
ROTa

pwe
c c= +( ) ( )

c

2
Re 14V

0
12
ROT

21
ROTa

pwe
c c= -( ) ( )

and

c

2
Re 15Q

0
22
ROT

11
ROTr

pwe
c c= -( ) ( )

c

2
Re 16U

0
21
ROT

12
ROTr

pwe
c c= +( ) ( )

c

2
Im 17V

0
12
ROT

21
ROTr

pwe
c c= -( ) ( )

(Sazonov 1969; Zheleznyakov 1996; Huang & Shcherbakov
2011). The superscript ROT indicates that χij is calculated in

this wavevector-aligned coordinate system. Outside of this
regime one must solve Equation (10) to compute transfer
coefficients.

These relations are consistent with the relationship between
the Stokes parameters and the polarization (or coherency)
matrix given in Zheleznyakov (1996), Equation (1.54), and
in, e.g., Moscibrodzka & Gammie (2017) and Huang &
Shcherbakov (2011). In particular, Q>0 corresponds to linear
polarization in the 1 direction, Q<0 to linear polarization in
the 2 direction, U>0 to linear polarization along the
e e 21 2+( ) axis, U<0 to linear polarization along the
e e 21 2-( ) axis, and V>0 to right-handed circular
polarization according to the IEEE convention (see Hamaker
& Bregman 1996 for a discussion) in which the electric field
vector rotates in a right-handed direction at fixed position if the
thumb points in the direction of propagation (optical and
infrared astronomers typically use the opposite convention).

The above relations are completely general. We specialize to
a magnetoactive plasma in which the magnetic field lies
in the 1, 3 plane (see Figure 1). Applying the Onsager
relations (which result from the time-reversal invariance
of the microscopic equations of motion) yields the result
χij(B)=χji(− B) (Stix 1992; Melrose 2008). This symmetry

may be used to show that χxy=−χyx, χzy=−χyz, and
χxz=χzx. Following rotation into the Stokes basis, these
results along with Equations (13), (16), and (20) imply
αU=ρU=0.

3. Susceptibility Tensor Calculation

The full derivation of the susceptibility 3-tensor χij for a
magnetized plasma with isotropic particle distribution function
is given in the Appendix A. It is convenient to calculate χij in a
basis x, y, z in which B is aligned along the z axis, and obtain

ij
ROTc by rotation. In particular (see Figure 1)

R R , 18y y
TROTc q c q= ( ) ( ) ( )

where

R
cos 0 sin

0 1 0
sin 0 cos

19y q
q q

q q
º

-⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

( ) ( )

( ) ( )
( )

so that in the 1, 2 plane

which simplifies using the Onsager symmetries noted above to

In order to compute χij, one must evaluate three momentum-
space integrals over an integrand which includes the particle
distribution function, as well as one integral over the
unperturbed orbits of the particles. In the results that follow
we use a scaled version of the distribution function
f m c f n3 3=˜ , where the usual distribution function
f dn d p3= with pi º components of particle momenta.
In brief, our approach involves the analytic evaluation of two

of the three momentum-space integrals (one of which assumes
that f is isotropic), as well as the infinite Bessel function sum that
arises as a result of one of these integrals. The novel feature is that
the remaining two-dimensional integral is numerically tractable
and more physically transparent than the standard form of the
susceptibility tensor. We also provide a publicly available code to
perform this numerical evaluation, which includes functions to
compute the transfer coefficients αS and ρS.
The final susceptibility 3-tensor for a single species with

signed charge q, mass m, and number density n has the form

k
i

d
df

d

2

Re
, , , 22ij

p
ij c

2

1

3 òc
p w

w w
g gb

g
g w w=

¥

( )
( )

˜
( ) ( )

cos cos sin sin cos sin

cos sin
, 20ij

xx zx xz zz xy zy

yx yz yy

ROT
2 2

c
q c q q c c q c q c q c

q c q c c
=

- + + -

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

( )

cos 2 cos sin sin cos sin

cos sin
. 21ij

xx xz zz xy zy

xy zy yy

ROT
2 2

c
q c q q c q c q c q c

q c q c c
=

- + -

- -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ) ( ) ( ) ( ) ( )
( ( ) ( ) )

( )
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where the total susceptibility is obtained by summing the
susceptibilities for each species. The quantity nq m4p

2 2w pº
is the species’ plasma frequency, qB mccw º ( ) is the
cyclotron frequency, v cb º , v c1 2 2 1 2g º - -( ) is the
Lorentz factor, k Barccosq º ( ˆ · ˆ) is the angle between
the magnetic field and wavevector connecting the source to
the observer, and df dg˜ is the derivative of the (scaled)
distribution function with respect to γ. In the numerical
evaluation of χij this derivative is computed analytically to
speed up the evaluation. These derivatives are:

df

d K

exp

4 1
Maxwell Jüttner 23e

e e
2

2g
g

p
= -

- Q
Q Q

˜ ( )
( )

( – ) ( )

df

d

p p1 1 2 1

4 1

power law 24

p p
p

2 2

min
1

max
1 2

3

g
g g

p g g b g
g= -

- - + + -
- -- - - -

- -
˜ ( )( ( ))

( ) ( )
( ‐ ) ( )

df

d

N

w w

1
1

1
kappa . 25

2

g
k

k
g
k

= -
+

+
-k

k- -
⎜ ⎟⎛
⎝

⎞
⎠

˜ ( ) ( ) ( )

Within Equation (23), K2 is the second-order modified Bessel
function of the second kind. In Equation (24), p is the index of
the power-law distribution function (the exponent on γ);

,min maxg g are the lower and upper bounds (respectively) on γ

within which the distribution is nonzero. In Equation (25), κ is
the index parameter for the kappa distribution, w is the width
parameter of the kappa distribution, and Nκ is the normalization
constant, which is computed numerically.

Finally, the kernel ij is given by

k kd e, , , , , , 26ij c
i

ij c
0

Re òg w w t t g w w= Fg t
¥ w

w( ) ( ) ( )( )

where

The functions kn, , , ,c t g w w( ) (shown as n( ) above) are

A A A

A

0

2 2 1 sin 2 cos

28

1
2 2 2 4 2 2

5


a a d d a d

=
+ - + - -

( )
(( ( ) ) ( ) )

( )

A A A A

A
2

2 3 cos 3 sin
291

2 2

5


d
= -

+ -( ) ( ( ) ) ( )

i A A A A

A
1

2 3 cos 3 sin
302

2

5


ad
=

+ -( ) ( ( ) ) ( )

A

A

A

A

A

A
A

A

A

A

0
6 cos 2 cos 6 sin

4 sin 2 sin
, 31

3

2

4 2

2

5

3

2

3


a d

a

= - +

- +

( )

( )

where

ck cos

Re
32a

gb q
w

t=
( )

( )
( )

ck2 sin
sin

2Re
33

c

cd
gb q

w
w

w
t=

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

A . 342 2a d= + ( )

The quantity k is the magnitude of the wavevector k. Notice
that our ωc is a signed quantity, and is negative for electrons.
When kIm∣ ( )∣ is small, Equation (22) is well behaved and

convergent provided Im(ω)>0; for real ω, convergence is
only lost when cos 0q =( ) , as the τ integrand becomes purely
oscillatory. We have not examined the convergence properties
of Equation (22) for values of k far from the real line, as these
cases are outside of the astrophysically relevant regime

k kIm Re∣ ( )∣ ∣ ( )∣ (see Section 2 for a discussion).

4. Numerical Algorithms

Equation (22) is free from singularities in both its real and
imaginary parts, and no longer contains an infinite sum—

features that significantly complicate numerical evaluation
of the standard version of the susceptibility tensor (see
Equation (102) in Appendix A). However, the integrand in
Equation (22) is oscillatory in both τ and γ. Fortunately, if the
integration over τ is performed first, the resultant integrand for
γ is smooth and rapidly convergent. The rate-limiting step is
the slowly convergent τ integral, which is independent of all
distribution function parameters, though it does depend on
ω/ωc and k.
In the provided code we specialize to real ω and k, and

throughout the remainder of this section we will use ω=Re

(ω), k=Re(k). In our algorithm we evaluate the two integrals
serially, with the τ integration done first. This process is slow,
however, as the τ integral—included in the kernel ij —yields
nonnegligible contributions at higher and higher τ as ω/ωc

increases. This behavior may be shown through analysis of the
kernel’s dependence on τ. The only terms in Equation (26) that
decay in τ (for real ω, k) do so because of inverse powers of A.
Pulling ck cosa gb q t wº ( ) out of the root in Equation (34)
and writing A out explicitly

A
ck cos

1 4 tan
sin

,
c

2
2

2

2
2
2

c

gb q t
w

q
w
w

t

t
= +

w
w( )( ) ( )

implying that the kernel only decays like A ∝ τ when
the second term in the root is small, namely, for τ?2 tan
(θ) ω/ωc. Thus, in the large-τ limit: 2 1 ;1

3 tµ( )

k, , ,

1

2
cos

Re
0 2

1

2
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Re
0 cos

2Re
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1

2
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Re
0 2 sin

2Re
1

0
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0 , 1 1 ;1 2
2  tµ( ) ( ) 0 sin sin3 a a t tµ ~( ) ( ) ( ) . Despite

the slow decay in τ, all of these integrals are convergent as long
as cos 0;q ¹( ) otherwise we must make use of the fact that
Im(ω)>0 (see the final paragraph of Section 3).

Since ij is smooth in γ and independent of all external
parameters except ω/ωc and k, it is possible to precompute and
tabulate the kernel, which may be used to produce a fast spline
fit to the γ integrand. This spline fit may then be integrated over
γ to yield a nearly instantaneous evaluation of the tensor for
any isotropic distribution function. In the module added to
symphony, we have provided spline fits to ij valid for the
range 1�γ, ω/ωc�1000.

We provide functions to calculate both absorption and
rotation coefficients from the susceptibility tensor. We also
provide the full τ–γ integrator so that the reader can access γ,
ω/ωc values outside our precomputed intervals.

Figure 2 shows the ij rotated and then transformed
into the Stokes basis according to Equations (11)–(17). We call
the resulting five coefficients d , ,I Q V c, ,a g w w q( ) and
d , ,Q V c,r g w w q( )/ , as they comprise most of the integrand for
these transfer coefficients prior to integration over γ. Note that
these coefficients depend on the observer angle θ rather than the
full wavevector k; throughout the code we use the astrophysically
relevant assumption ω≈ck to eliminate the magnitude of the
wavevector. The figure shows the extent to which electrons
contribute to the absorptivity and rotativity at a given γ and ω/ωc
for θ=π/3, and the dashed line shows 2 9 sinc

2w w g q= ( ) ( ),
the critical value of the frequency where the interaction of the
electron with the radiation field is expected to peak.

5. Tests and Comparison to Earlier Work

We have performed a number of tests and comparisons to
earlier work, not all of which we will describe in detail here,

including comparison of χij for a thermal distribution in the
nonrelativistic (NR) limit with the well-known warm and cold
plasma χij; numerical comparison of χij for a thermal
distribution in the relativistic limit to the Trubnikov (1958)
formulation of the same tensor; numerical comparison of
absorption coefficients calculated from combinations of
components of χij for thermal, power law, and kappa
distributions with those computed using the alternative
algorithm in symphony (Pandya et al. 2016); and comparison
of the Faraday rotation coefficients for the thermal distribution
with the fitting formulae derived by Huang & Shcherbakov
(2011) and extended by Dexter (2016).
To persuade the reader that our formulation is indeed correct,

we first show explicitly that our formulation for the thermal
distribution function is equivalent in the NR limit to the well-
known warm plasma susceptibility tensor, and then show
numerical comparisons of the absorption coefficients with
those from symphony.

5.1. Thermal Susceptibility Tensor NR Limit

The NR susceptibility tensor can be derived starting from
either Equation (108) or the final susceptibility tensor
(Equation (22)), each with the Maxwell–Jüttner distribution
function for f (see Equation (23)). Focusing on the latter
approach, one begins by taking the NR limit β=1, where the
Maxwell–Jüttner distribution function becomes the familiar
Maxwell–Boltzmann distribution. Converting the measure
from from β to the velocity v, we find that the v integral is
standard and is of Gaussian type with an additional factor of v n

for some nonnegative integer n. Evaluating this velocity space
integral analytically yields

Figure 2. Kernel ij , which is transformed into the Stokes basis by Equations (11)–(17) to yield the transfer coefficients prior to γ integration. We call these
unintegrated coefficients d , ,I Q V c, ,a g w w q( ) and d , ,Q V c,r g w w q( ). The coefficients d d,U Ua r are equal to zero due to the Onsager relations, and are not shown.
White in the upper-right panel denotes a region where the coefficient d Va is zero to within machine precision. Cancellation between multiple oscillatory factors in the
integrand produces the pattern in the upper-right corner of the d Qr plot.

5

The Astrophysical Journal, 868:13 (16pp), 2018 November 20 Pandya et al.



where C cos
Re

cº w t
w( )( )

, C cos2 2Re
cº w t
w( )( )

, S sin
Re

cº w t
w( )( )

,

and S sin2 2Re
cº w t
w( )( )

are introduced to save space. The

quantity k w

2
T

c

2 2

2l º
w

^ , where w k T m2T B= is the (NR) thermal

speed, k kk s sin q= =^ · ˆ ∣ ∣ ( ) (where s x y 2º +ˆ ( ˆ ˆ) is the
cylindrical radial coordinate) is the magnitude of the comp-
onent of the wavevector perpendicular to the magnetic field,
and k kk z cosz q= =· ˆ ∣ ∣ ( ) is the magnitude of the component
parallel to the field. For kz=0 and k real, one must use the fact
that Im(ω)>0 in order for the integral to converge (see
Section 2 for further discussion).

Equation (35) is superficially different from the warm plasma
susceptibility tensor as given by Swanson8 (2003, 2008):

where the function In l( ) is the modified Bessel function of the
first kind with argument λ (suppressed to save space);
I In nl l¢ º ¶ ¶( ) is its derivative; qsgn( ) is the sign of the
charge for the species in question (=−1 for electrons). The
function Z(ζn) is the plasma dispersion function, defined to be

Z
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with argument n k wn c z Tz w w= +( ∣ ∣) ( ), and Z′(ζ)=−2
[1+ζ Z(ζ)] is its derivative. For Im(ζ)�0, Z is taken to be
the analytic continuation of Equation (37). Note that the
integral in the plasma dispersion function contains a simple

pole at ξ=ζ; applying the Sokhotski–Plemelj theorem allows
one to rewrite the integral in terms of a purely real Cauchy
principal value integral, plus a constant imaginary part.
Though Equations (35) and (36) appear different, they are

both derived starting with the same equation (see
Equation (100) in Appendix A); the difference comes in the
next step, where the standard approach evaluates the τ integral
resulting in a resonant denominator, which becomes the plasma
dispersion function Z(ζn) above (see Equation (101)). We avoid
this step and instead analytically evaluate the infinite sum, after
which it is possible to analytically evaluate the two remaining
momentum-space integrals, leaving only a single integral
over τ.

At this stage is it still possible to equate the two tensors
analytically. We do so for one component (χ31=χ13),
and leave the remaining components as an exercise for
the reader. All of the techniques required to analytically
equate the remaining components are shown in the derivation
below.

5.1.1. Analytic Comparison of 13
MBc

Beginning with the component 13
MBc of Equation (35), we

note that the term exp 2 sin2
2Re
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using the sine power-reducing identity xsin x2 1 cos 2
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8 Here the tensor is corrected by a factor of qsgn( ) in the components

13
MB,Swanson

31
MB,Swansonc c= , which is erroneously dropped in his derivation. The

missing sign is absorbed into our factors of ωc, which is signed here but
unsigned in Swanson’s work.
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We may now apply the Jacobi–Anger identity and then a well-
known Bessel function identity
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In this equation we may identify the definition of the modified
Bessel function of the first kind
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and finally arrive at
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Substituting this result into the χ13 component of
Equation (35), we find
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We now use Feynman’s trick9 to remove the factor of τ from
the integrand, making the integral one of Gaussian type:
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which may be evaluated by hand after applying Euler’s formula
to write the sine and cosine as complex exponentials, or using a
symbolic integration software. Evaluating the integral and then

the derivative with respect to n, we find
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where erfi(x) is the imaginary error function of argument x, and
all factors of Re(ω) have canceled. Swanson (2008) Equations
(A.14)–(A.15) relate the imaginary error function to the plasma
dispersion function via an intermediary function called w(x):

w x e i x1 erfi 44x2= +-( ) ( ( )) ( )

Z x i w x , 45p=( ) ( ) ( )

which we can immediately identify in Equation (43) and then
replace with the plasma dispersion function to arrive at
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where we have also identified n k wn c z Tz w w= +( ∣ ∣) ( ).
Distributing the sum into the two terms, we may shift the
sum indices on the first term such that n→n−1, and on the
second term n→n+1; pulling out common terms yields

k k w
e

k w
Z

I I

1

2

1

. 47

p z T

c z T n
n n

n n

13
MB

2 2

2 2

1 1

åc
w

ww
z z

l l

=

´ -

l^ -

=-¥

¥

+ -

( )

[ ( ) ( )] ( )

We now make use of another Bessel function identity
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( )9 This technique is more formally known as Leibniz’s rule for differentiation
under the integral.
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Figure 3. Transfer coefficients Sa and Sr (with S I Q V, ,Î { }) for the Maxwell–Jüttner distribution, along with alternative approaches to computing these quantities
from the literature. Relative error plots are shown on the right. See Section 5.2 for further discussion.
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to add on a term equal to zero

k k w
e

k w
Z

n
I e

k w

n
I

k k w
e

k w
Z

nI

1

2

1

2 1

2

1 2

1

2

1
2 1 ;

51

p z T

c z T n
n n

n
p

z T n
n

p z T

c z T n
n n

n

13
MB

2 2

2 2

2

2 2

2 2

2 2

å

å

å

c
w

ww
z z

l
l

w

w l
l

w

ww
z z

l
l

=

´
-

+
-

= - +

l

l

l

^ -

=-¥

¥

-

=-¥

¥

^ -

=-¥

¥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

( )[ ( ) ] ( )

( )

we can now use the identity
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to arrive at
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which is Swanson’s form of the susceptibility tensor comp-
onent ( 13

MB, Swansonc ) for the NR Maxwellian distribution
(Equation (36)).

5.2. Numerical Comparison

To test our formulation of the susceptibility tensor in the
relativistic limit (Equation (22)), we compute the transfer
coefficients αS and ρS (with S I Q V, ,Î { }; 0U Ua r= = with
our choice of coordinates) and compare the results from our
approach to existing methods in the literature. For the
absorption coefficients αS, we compare our code’s output
(labeled “ approachijc ” in Figure 3) to the result of numerically
integrating the relativistic thermal susceptibility tensor derived
by Trubnikov (1958) and to αS as computed by the alternative
algorithm in symphony. For the Faraday rotation coefficients
ρS, we compare our approach again to that of Trubnikov, and to
the fitting formulae supplied by Dexter (2016) and Huang &
Shcherbakov (2011). For all plots in Figure 3 we choose
fiducial parameters θ=π/3, Θe=10, and for the error plots
(shown on the right-hand side of each corresponding plot) we
compute the error as follows:

Relative Error
our approach standard approach

standard approach
. 54=

-∣ ∣ ( )

We find agreement to within 1% for most coefficients across
the sampled range in ω/ωc. Large errors when compared to
Trubnikov’s tensor arise due to difficulty numerically integrat-
ing Trubnikov’s tensor at high frequency, as it oscillates more
rapidly and converges more slowly with ω/ωc. Error in
the coefficient ρQ spikes around ω/ωc=2×102 because the
coefficient changes sign there, and small differences in the
location of that zero-crossing amount to large relative errors.

Similar results were found for the other isotropic distribution
functions we tested—namely the power-law and kappa
distributions—though for these two no equivalent of the
Trubnikov tensor exists, and for the latter there are no fitting
formulae either. Fortunately, the distribution function separates
from the numerically difficult portion of the integral (the kernel
ij in Equation (22)), so significant errors should not arise upon

changing distribution functions, so long as they are smooth and
well-behaved in γ. Comparisons of the absorption coefficients
to those from symphony for the power-law and kappa

distributions agree to within 1% for the region of parameter
space surveyed.

6. Conclusion

In this paper we provide a general means for numerically
evaluating the susceptibility tensor for arbitrary isotropic
distribution functions. This result can be used to evaluate the
modes of a relativistic magnetized plasma, and to find the
radiative transfer coefficients related to absorption and Faraday
rotation. We showcase the accuracy and generality of our
approach using a series of analytic and numerical tests. The
new scheme is implemented in the publicly available code
symphony, available for free online (see footnote 5).

This work was supported by a Princeton First Year
Fellowship awarded to A.P. and Quazar Technologies for
M.C. C.F.G. acknowledges support from NSF grants AST-
1333612, AST-1716327, and PIRE-1743747, and a Romano
Professorial Scholarship.

Appendix

In this appendix we derive our expression for the suscept-
ibility 3-tensor χij. First we provide a brief summary, then more
detailed proof.
Both the standard approach and our approach can be

summarized as follows. First, write down the linearized Vlasov
equation for the perturbed distribution f1 around some
equilibrium distribution function f0 which is uniform in space
and time, in the presence of a uniform magnetic field B
(Equation (55)). Find f1 by an integration in time along
unperturbed orbits, assuming the perturbed electric field

k xE i i texpi1, wµ -( · ) (Equation (67)). Next, take a first
moment of f1 in momentum space to find the current ji
(Equation (90)). Identify this current with Eij j1,s to find the
conductivity tensor and hence χij, which is now written as an
integral over momentum space and time (Equation (100)).
The standard approach involves rewriting the exponential

space and time dependence (which comes from E i1, described
in the previous paragraph) in terms of an infinite sum over
Bessel functions (Equation (96)), which is then integrated over
time (Equations (100)–(101)). For a gyrotropic distribution
f f p p,0 0= ^ ( ) the result is a two-dimensional momentum-
space integral over an integrand containing the infinite sum and
a resonant denominator featuring resonances in both of the two
momentum-space integrals (Equation (102)). This is the form
implicitly used in evaluation of the absorptivities in symph-
ony. Numerical evaluation requires, effectively, evaluation of
a three-dimensional integral.
It is worth noting here that Trubnikov (1958; summarized in

covariant form by Melrose 1997) carries the calculation a bit
further. Assuming a relativistic thermal (Maxwell–Jüttner)
distribution, he uses a distribution-specific set of manipulations
to directly evaluate the momentum-space integrals, leaving a
single integral over time.
Our approach starts with the standard approach prior to the

integration over time: a two-dimensional phase space integral,
an infinite sum, and an integral over time (Equation (100)).
Using Bessel function identities we rewrite the integrand to
eliminate the infinite sum (Equation (108)). Then we carry out
an integral over angle in momentum space. This last step is
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restricted to isotropic distribution functions. The resulting
expression (Equation (22)) is a relatively well-behaved two-
dimensional integral over Lorentz factor and time that is
susceptible to numerical evaluation.

A.1. Standard Approach

In the work below we follow closely Swanson (2003, 2008)
and Stix (1992), filling in steps they omit.

The Vlasov equation (in Gaussian units) is

v E
v

B
df

dt

f

t
f q

c
f 0, 55p=

¶
¶

+  + + ´  =
⎡
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⎤
⎦⎥· ( )

where p xf t, ,( ) is the particle distribution function, q is the
signed charge (which is negative for electrons), and fp is the
gradient of f in momentum space. We are interested in solving
the Vlasov equation to linear order in the perturbing field E1 for
a plasma with a static background magnetic field B0 and no
background electric field E 00 = . Formally, we expand the
following quantities:

p x p p xf t f f t, , , , ... 560 1= + +( ) ( ) ( ) ( )

E x E xt t, , ... 571= +( ) ( ) ( )

B x B B xt t, , ... 580 1= + +( ) ( ) ( )

and are interested in solving for f1. Substituting the above
definitions into Equation (55) and dropping terms higher than
first order, we have
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Since f0 is assumed to be independent of time and position,
f t 00¶ ¶ = and f 00 = . Using this fact and rearranging
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Note that the left-hand side of the equation is equal to the
Vlasov equation for a distribution p xf t, ,1 ( ) for a particle only
under the influence of the static background magnetic field, B0.
The trajectory of the particle only under the influence of B0 is
conventionally called its unperturbed orbit, for which the
following approach is named. Thus, using Equation (55) we
can rewrite Equation (60) as

E
v

B
df

dt
q

c
f , 61p

1

unperturbed orbit
1 1 0= - + ´ 
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which can be expressed as an integral
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v

B xf t q dt t
c

t

f

, , , ,

, 62

t

p

1 1 1

0

ò=- ¢ ¢ ¢ +
¢
´ ¢ ¢

´ 

-¥

¢

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( )

where the integral is taken over the aforementioned unper-
turbed particle orbit, denoted by primed variables t¢, v¢, and p¢.
This integral is taken over the entire history of the particle
along its unperturbed orbit, from t¢ = -¥ to when the
perturbing field is applied at t t¢ = .
We can assume that the perturbing electric and magnetic

fields are of the form

E x Et e, 63k x
c

i t
1 = w- -( ) ( )( · )

B x Bt e, , 64k x
c

i t
1 = w- -( ) ( )( · )

where Ec and Bc are the constant vector amplitudes of the
electric and magnetic fields, and Im 0w >( ) (see Section 2 for a
discussion). Using this assumption and Maxwell’s equations
we can rewrite B1 as

B k E k E
c c

e ; 65k x
c

i t
1 1

w w
= ´ = ´ w- - ( )( · )

substituting this equation into Equation (62) yields
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which, after expanding the vector triple product, can be
written as

p x E

v k v k

f t q dt e
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The odd notation in the above equation—with the vector
quantity Ec pulled out of the brackets, splitting the dot product
in the v k¢· term—is kept for easy comparison with Equation
(33) in Stix (1992).

A.1.1. Solving for the Unperturbed Orbits

Now we need to express v¢ and x¢ in terms of t¢. We can do
this by noting that a particle on the unperturbed trajectory x t¢ ¢( )
is described by

F
v v

Bm
d

dt

q

c
, 680g=

¢
¢
=

¢
´ ( )

which is also subject to the constraint that at t t¢ = we must
have v v¢ = . Note that the acceleration is always perpendicular
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to the velocity; as a result, v∣ ∣ will remain constant along the
entirety of the unperturbed orbit, up to t t¢ = where v v¢ = .
Thus, we may use v in the definition of γ rather than v¢, making
γ a constant in the differential equation.

The static magnetic field is conventionally taken to be
parallel to the ẑ axis. It will be easier to solve for unknown
coefficients if we define t tt¢ º - ¢, note that d dtt¢ = - ¢, and
rewrite this differential equation as

v v
m
d

d

q

c
B z. 690g

t
¢
¢
= -

¢
´ ˆ ( )

Breaking this vector equation into components and defining
the (signed) NR cyclotron frequency qB mccw = ( ) as well as
the (signed) relativistic version c cw gW º , one may solve the
equations to find

v v vsin cos 70x y c x ct t¢ = - W ¢ + W ¢( ) ( ) ( )

v v vsin cos 71y x c y ct t¢ = W ¢ + W ¢( ) ( ) ( )

v v . 72z z¢ = ( )

Integrating with respect to dt dt¢ = - ¢ and applying the
boundary condition x x¢ = at 0t¢ = results in the particle’s
full trajectory
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A.1.2. Integrating over Unperturbed Orbits

We can now substitute our values for v¢ and x¢ into
Equation (67) (reproduced below) and continue our simplifica-
tion of the integral
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We can immediately see that we need to rewrite the exponential
in terms of t¢ using the unperturbed orbit x t¢ ¢( ). Doing so, we
find
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In order to progress further we must make the assumption
that f0 is gyrotropic, meaning it is independent of the gyrophase
f. This assumption is equivalent to supposing that
f f p p,0 0= ^ ( ), where p̂ is the component of the momentum
perpendicular to the magnetic field B Bz= ˆ, and p is the
component parallel to B. Analogous definitions are made for
the perpendicular and parallel velocities, which appear below.
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Doing so yields

E
v k v k

f

E v E v
f

v

k
f

v

v
f

E f
k v k v

f
v

v
f

1

. 83

c p

x x y y
z

z
z

z z
x x y y

z
z

0

0
0 0

0 0 0

w

w

w

+
¢ - ¢



= ¢ + ¢ + -
¢

+ -
¢ + ¢

-
¢

¢

^

^ ^
^

^
^

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

· · ·

( )

( )

Substituting the values for vx¢, vy¢, and vz¢ gives the final result for
this factor
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We can now work toward evaluating the integral in
Equation (67). The complicated exponential factor in
Equation (77) can be simplified by defining
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At this point we may write f1 explicitly using Equations (84)
and (87) as
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Using this expression, changing the integral from one over t¢ to
one over t¢ ( 0,Î ¥( )), suppressing the k xi texp w- -( ( · ))
and interpreting the integral as the Fourier amplitude of the
distribution function,
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A.1.3. Finding the Conductivity Tensor ijs

Equation (89) can be used to find the current
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at this point many authors elect to evaluate the t¢ integral; we
instead follow the treatment of Stix (1992), who first switches
to cylindrical coordinates p p, ,z f^{ } and evaluates the angular
momentum-space integral over f.
To begin, we express the components of v and k in

cylindrical coordinates

v v cos 92x f= ^ ( ) ( )
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k k sin , 95y y= ^ ( ) ( )

where we have introduced the polar angle ψ to denote the angle
of the wavevector in the x–y plane, and the components vz and
kz are identical to their Cartesian counterparts. Stix immediately
simplifies the computation by fixing coordinates such that

0y = , resulting in k kx = ^, ky=0, and kRe 0x >( ) . This
choice does not amount to a loss of generality, as one may
simply rotate the resultant susceptibility tensor at the end of the
computation to return the 0y ¹ case.
Substituting the new definitions for v and k, it is now

possible to evaluate the f integral using the following known
integrals:
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which are all derived from Bessel function orthogonality
relations. The arguments of the Bessel functions in
Equation (96) are all b, given in Equation (86). Computing
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the integral and arranging the terms into a matrix, we find
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following Stix. Hence, one may read off the conductivity tensor σ
and then use Equations (7)–(9) to find the susceptibility tensor.

A.1.4. Arriving at the Standard Form of the Susceptibility Tensor

Computing the susceptibility tensor from the conductivity
tensor yields
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At this point all authors use the fact that Im 0w >( ) to
evaluate the t¢ integral in Equation (100), resulting in the
following (Stix 1992 Ch. 10, Equation (44)):
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where the right-hand side involves a resonant denominator
that complicates both the p̂ and pz integrals significantly. We
choose not to evaluate this integral at this time. Instead,
we have developed a novel approach that involves
analytically computing the infinite sum, then changing
variables so that one of the two remaining momentum-space
integrals may also be done analytically. For completeness, we
include the final standard form of the susceptibility tensor
(Stix 1992):
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A.2. Novel Integration Method

Now we present our novel approach for integrating the
susceptibility tensor. We begin with Equation (100) and change
variables from p p, z^ to p mc p mc1 ;z

2 2g º + +^( ) ( )
cos x , defined with particle momentum pitch angle

p parctan 2 ,zx º ^( ) (where arctan 2 is the two-argument
arctangent); Ret w t g= ¢( ) . Substituting these new defini-
tions yields

where

ck cos

Re
. 104a

gb q
w

t=
( )

( )
( )

The infinite sums at this point may all be evaluated
analytically if one makes use of a couple of well-known

k
iq

m
mc d d d e e

e

mc
n

b
J U mc

in

b
J J U mc

n

b
J W

mc
in

b
J J U mc J U mc iJ J W

mc
n

b
J U mc iJ J U mc J W

,
Re

cos

2

sin sin sin

sin sin sin

cos cos cos

, 103

ij
i i

n

n n n n

n n n n n

n n n n

2

0 1 1

1
3 3 2

0

cos

2

2
2 2

2

2 2

in c

Re

Re

ò ò ò

å

c w
e w w

g b g x t

p

x x x

x x x

x x x

= -

´

¢

- ¢ ¢ - ¢

¢

g t a x
¥

-

¥
-

=-¥

¥
-

w
w

w t
w

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

13

The Astrophysical Journal, 868:13 (16pp), 2018 November 20 Pandya et al.



Bessel function identities and the Graf addition theorem
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The specific cases of these formulae applied to the sums in the
susceptibility tensor are worked out and provided in
Appendix A.3. Applying these formulae yields
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reproduced here for convenience:
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The cos x integral in Equation (108) above may be evaluated
analytically (see Appendix A.4) for each of the susceptibility
tensor components, as long as the distribution function is
independent of ξ (in other words, as long as f is isotropic).

Evaluating these integrals, we find
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where A 2 2a d= + . All of the above results have been
checked numerically, and the derivations are shown in
Appendix A.4.
The final susceptibility tensor is shown in Equation (22).

A.3. Analytic Evaluation of Bessel Function Sums

Evaluating the required sums yields
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where the arguments of the Bessel functions on the left-hand
sides of Equations (114)–(119) are b, as given in Equation (86).

A.4. Analytic Integration of cos x Integrals

All of the cos x integrals in Equation (108) are one of three
types:
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The integrals 1 and 3 can be expressed in terms of the integral

n x J x dxcos 1 , 123n
0

1
2* ò a d= -( ) ( ) ( ) ( )

which can be evaluated analytically; 2 must be handled
separately, but it can also be evaluated analytically via a similar
method.

A.4.1. n* ( )

Now we must evaluate n* ( ). It can be done by
manipulating integral number 6.727 from Gradshteyn &
Ryzhik (2007):
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which is erroneously listed as only valid for ,a d real (compare
to Equation (10.9.27) of Olver et al. (2018), which allows for
complex ,a d following the substitution z A, 1

2
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change of measure x cos qº ). Looking back at n* ( ), we can
integrate it by parts, choosing xcos a( ) to be dv and
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2d -( ) to be u; this procedure yields
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Rearranging, we find
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A.4.2. n1 ( )

The integral 1 can be written in terms of * by first
using Euler’s formula and writing the exponentials as

x i xcos sina a- + -( ) ( ). The other terms in both integrands
are all even, and the integral is over the symmetric interval
[−1, 1], so the imaginary parts of the integrals must be zero by
symmetry. Now we can rewrite 1 as
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which can be written as
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This integral appears for two different values of n: 0 and 2.
The former results in
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A.4.3. n2 ( )

The integrand of n2 ( ) is odd, so the symmetry of the
integration interval now picks out the imaginary part and the
real part is zero:

n i x x x J x dx2 1 sin 1 . 132n2
0

1
2 2 ò a d= - - -( ) ( ) ( ) ( )

Multiplying by x x1 1 12 2= - - yields
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This integral only appears as 12 ( ), which evaluates to the
relatively simple expression
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The remaining integral, 3 , is the simplest to calculate:
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This integral only appears as 03 ( ), which can be evaluated
to yield
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